
An overview about Basic For Qt®
from July 17, 2012

Contents
An overview about Basic For Qt®..1

Object-Oriented...2
Event-Driven...2
Basic For Qt® Framework..3

The Integrated Development Environment (IDE) - To simplify application development.............4
IDE Contents...4
Toolbox...4
Project Window...4
Properties Windows..4
Code / Design view...4
Review..4

Getting Started - Making your first application...5
Variables...5

Data Types...5
Byte..5
Short...5
Integer...6
Single..6
Double / Float...6
Boolean...6
String..6
Object / id...6
Basic For Qt® also supports VB6 datatypes like Currency (→ Decimal) and Date (→
DateTime)...6

Using Variables...7
Assigning Values..7
Examples..7
Constants..7

Arrays...8
Branch statements..8

If...Else...ElseIf Statement...8
Select Statement..8
Boolean Operators...9

Loop statements...9
Operators..9

Assignment and comparison operators...10
Assignment...10
Comparison..10

Arithmetic operators..11
Why the funny symbols?...11
Addition...12
Subtraction...12
Multiplication..12
Division...12

Exponentiation...12
String operators...13

String concatenation...13
Logical operators...13

Not..13
And...14
AndAlso..14
Or..14
OrElse...14
Xor..14

GUI Programming...16
Some Visible controls...16

TextBoxes...16
Labels...16
CommandButtons...16
CheckBoxes..16
RadioButtons..16
Editor..16

Some other controls not visible at design time...16
OpenFileDialog..17
SaveFileDialog...17
FontDialog..17
ColorDialog..17

Copyright..17

About The Author

Bernd Noetscher is a software developer and the main developer of the Basic For Qt®
programming language. In his spare time he goes dancing, reads many books, and plays piano. He
is also interested in theatre and cinema. His private website is www.berndnoetscher.de

Basic For Qt® is a multi-purpose computer programming language that is suitable for most
development needs. The language is designed with Rapid Application Development in mind,
providing several tools to shorten development time. The following text introduces language
fundamentals and covers a variety of the Basic For Qt® Framework.

Basic For Qt® is the next generation of BASIC programming languages. As a language, Basic For
Qt® has the following traits:

Object-Oriented
Visual Basic 6 included limited support for object-oriented design. Encapsulation was supported
with Public and Private data types in Classes, as well as special accessor/mutator pairs called
Properties. Polymorphism received crude support through the Implements keyword, which would
require that one class implement all of the methods in another, skeleton class. Inheritance was
neglected completely.

As of Basic For Qt®, all of this has changed. Basic For Qt® includes full-blown support for
object-oriented concepts, including simple inheritance. Everything inherits from the Object base
class.

Event-Driven
Events are recognized, because they use a certain naming convention (ObjectName_EventName).

http://www.berndnoetscher.de/

Basic For Qt® Framework
As the name implies, Basic For Qt® runs on top of Nokia’s crossplatform Qt framework, meaning
the language has full access to all of the supporting classes in the C++ Qt framework. It’s also
possible to run Basic For Qt® programs under either Windows, Mac OS X, or even Linux.

The Integrated Development Environment (IDE) - To simplify
application development.
An integrated development environment (IDE), also known as integrated design environment and
integrated debugging environment, is a type of computer program that assists computer
programmers to develop software.

IDE Contents
The IDE consists of several sections, or tools, that the developer uses while programming. As you
view the IDE for a new project you generally have three sections in view:

• The Toolbox on the right
• The Project Window on the right
• The Code / Design view in the middle

Toolbox
The Toolbox is a palette of developer objects, or controls, that are placed on forms or web pages,
and then code is added to allow the user to interact with them. An example would be TextBox,
CommandButton and ListBox controls. With these three controls added to a Form object the
developer could write code that would take text, input by the application user, and added to the
ListBox after the button was clicked. Okay, not rocket science, but useful.

Project Window
This is a section that is used to view and modify the contents of the project. A Basic For Qt®
project will generally have a Form object with a code page, references to System components and
possibly other modules with special code that is used by the application.

Properties Windows
The properties windows shows all the control (like textbox) properties to be changed at design time.
Most of these properties can be changed at run time with some code, but basically most of these
properties change the way the control is displayed on your application.

Code / Design view
This is where the magic takes place. Forms are designed graphically. In other words, the developer
has a form on the screen that can be sized and modified to look the way it will be displayed to the
application users. Controls are added to the form from the Toolbox, the color and caption can be
changed along with many other item properties.

This center window of the IDE is also where developers write the code that makes everything in the
application work. The code is written in modules, or files, that are either connected to an object
(Forms) or called specifically when needed.

Review
The Basic For Qt® IDE is a complex and exciting work space for developers, providing many
enhancements and upgrades from the days of VB6 or the introduction of C++. This section only
serves as a mere introduction to this multi-functional interface.

Getting Started - Making your first application.
In this manual, however, we will be covering the IDE. Programming a form (window) by hand can
be challenging if you are not familliar with the language, so starting with a good form designer will
help a lot.

Okay, it’s now time for your first program!

Start up a Basic For Qt® IDE and create a new project (select one with one form and one module).

Create a new form if Basic For Qt® did not create one for you automatically and change to the
source code view. You should see a plain text editor.

Enter the following code:
Event Init()
 MsgBox("Hello World!")
End Event

This creates your classic “Hello World!" program.

Press F5 or go to the run menu and select Start to start the program. You should see an alert box that
says “Hello World!" and then the main window (with nothing on it) should open. Click the “X” in
the title bar like you would to quit the program!

Variables
Variables are the entities used to store various types of data. In programing, a variable is simply a
place to store data. A variable has a name and a data type. In Basic For Qt®, a variable is declared
using the Dim (short for Dimension) statement. Here is the syntax:
Dim varName As varType

varName is the name of your Variable. varType is the data type of the variable. Types include
String, Integer, Double, Boolean, etc.

For example, to declare an Integer named MyInt use:
Dim MyInt As Integer

Data Types
Data Types define the type of data that a variable can store. Some variables store numbers, others
store names. The basic types that can be used in Basic For Qt® are:

Byte
8 bits, stores integer values from 0 to 255.
Dim bytMyVariable As Byte

Short
Meaning short integer. 16 bits (2 bytes), stores integer values from -32,768 to 32,767.
Dim shrtMyVariable As Short

Integer
32 bits (4 bytes), stores integer values from -2,147,483,648 to 2,147,483,647.
Dim intMyVariable As Integer

Single
Meaning single-precision floating point. 32 bits (4 bytes), stores floating-point values from
-3.40282347e38 to 3.40282347e38. Cannot store an exact zero due to the required normalized form.
Smallest positive value greater than zero is 1.401298e-45. Biggest negative value less than zero is
-1.401298e-45.
Dim sglMyVariable As Single

Double / Float
Meaning double-precision floating point. 64 bits (8 bytes), stores floating-point values from
-1.7976931348623157e308 to 1.7976931348623157e308. Cannot store an exact zero due to the
required normalized form. Smallest positive value greater than zero is 4.94065645841247e-324.
Biggest negative value less than zero is -4.94065645841247e-324.
Dim dblMyVariable As Double

Boolean
Requires 1 bit (1 byte used), stores boolean true/false values.
Dim boolMyVariable As Boolean

String
Stores any series of characters. e.g. word, phrase, sentence, paragraph, etc.
Dim strMyVariable As String

Object / id
Stores a reference to a Basic For Qt® object.
Dim objMyObject As Object

Basic For Qt® also supports VB6 datatypes like Currency (→ Decimal) and Date (→
DateTime)

Using Variables

Assigning Values
A value is the data contained in a variable. To assign a value to a variable that is already declared,
use an equal sign.

Examples
For string variables, use double quotes around the value:
strMyVariable = "The String"

For all others, remove the quotes:
bytMyVariable = 1
sbytMyVariable = -2
intMyVariable = 100
sngMyVariable = 1.234
dblMyVariable = 1.567
boolMyVariable = True

To assign a variable the value of another variable, simply replace the value on the right side of the
equal sign with the name of the variable that holds the desired data.

You can also assign a value to a variable in the declaration itself.

Dim myVariable As String = “StringValue”

Important: Basic For Qt® always assigns the value of the right variable to the left variable. The
variable on the left takes the value of the right variable. The variable on the right does not change.

Constants
Constants are like variables that don’t change. They take the place of values that you would not like
to type over and over. Constants are declared using the keyword “Const”. Their values are defined
in their declaration - they also use data types. Here is the syntax:
Const cnstMyConstant As String = "The very long string"

Here is an example:
Const cnstPi As Float = 3.14159265

Arrays
A variable that stores several data of the same data type.

An array is simply a variable that can store more then one piece of data. The data is stored in a list.
If you declare an integer, then that variable can only store one integer. An array of integers can store
many integers. Each one is given its own number. For example, this line of code:
Dim MyArray[5] As Integer

will give an array like this

Index Data
00 0
01 0
02 0
03 0
04 0

Branch statements
The various conditional statements in the language for selective code execution.

If...Else...ElseIf Statement
If/Else Statments are used to conditionally execute code based on the condition provided. If the
condition provided in the If statement evaluates to true, the code in the block is executed.
Otherwise, execution would proceed to the optional Else If statements, or the Else statement. Else If
and Else are not required parts of an If statement.

An example of the If/Else/Else If branch statement is:
'The following variable declarations are for the following example only.

Dim x As Integer
Dim y As Integer

If x = y Then
 'Whatever will happen if x = y
Else If x < y Then
 'Whatever will happen if x < y
Else
 'Whatever will happen if x isn't = to y and x isn't < to y
End If

Select Statement
Either strings or numbers can be used for a Select statement.

Select Case statements are usually used to avoid long chains of If/Else If/…/Else If/Else statements.

An example of a Select branch statement using an integer is:
Dim nCPU as Integer
Select nCPU
 Case 0
 'No CPU!
 Case 1

 'Single CPU
 Case 2
 'Dual CPU machine
 Case 4
 'Quad CPU machine
 Case 3, 5 To 8
 '3, 5, 6, 7, 8 CPU's
 Case Else
 'Something more than 8
End Select

Boolean Operators
Boolean operators in Basic For Qt® now accomodate for short circuit boolean evaluation, most
other languages always apply short citcuit boolean evaluation by default, consider the following
boolean statement:

functionA() And functionB()

With this statement, when short-circuit boolean evaluation is used, the second function will only be
called if the first function returns true, this is because if functionA returns false it becomes
irrelevant to the outcome of the statement whether functionB returns true or not.

However, when no short-circuit boolean evaluation is used, both of the functions will be called
irrespective of whether the first part of the statement returns true or false.

Something to note with short-circuit boolean evaluation is that the order of the parameters can
become important when it is used.

Due to previous versions of VB6 not having short circuit boolean evaluation, Basic For Qt® comes
with backward compatibility and adds two new boolean logic identifiers which support short-circuit
boolean evaluation, so in addition to the standard boolean operators:
 Not
 And
 Or
 Xor

There are also two new operators which function using short-circuit boolean evaluation, and they
are:
 AndAlso
 OrElse

Loop statements
The various loop statements in the language are for repetitive code execution.

For example:

• Do…Until Loop
• While…Do Loop
• For Loop

Operators
Programming languages have a set of operators that perform arithmetic operations, and others such
as Boolean operations on truth values, and string operators manipulating strings of text. Computers
are mathematical devices, but compilers and interpreters require a full syntactic theory of all

operations in order to parse formulae involving any combinations correctly. In particular they
depend on operator precedence rules, on order of operations, that are tacitly assumed in
mathematical writing.

Conventionally, the computing usage of operator also goes beyond the mathematical usage (for
functions).

So operators are special symbols that are used to represent for example simple computations like
addition and multiplication. Most of the operators in Basic For Qt® do exactly what you would
expect them to do, because they are common mathematical symbols. For example, the operator for
adding two integers is +.

Assignment and comparison operators

Assignment
The "=" operator is used for assignment. The operator also serves as a comparison operator (see
Comparison).

• To set values:
x = 7 ' x is now seven; in math terms we could say "let x = 7"
x = -1294
x = "example"

You can use variables in the equal operator, as well.
Dim x As Integer
x = 4 ' Anywhere we use x, 4 will be used.

Comparison
The "=" operator is used for comparison. The operator also serves as a assignation operator (see
Assignment).

• To compare values:
If 4 = 9 Then ' This code will never happen:
 End ' Exit the program.
End If
If 1234 = 1234 Then ' This code will always be run after the check:
 MsgBox("Wow! 1234 is the same as 1234.")
 ' Create a box in the center of the screen.
End If

You can use variables in the equal operator, as well.
If x = 4 Then
 MsgBox("x is four.")
End If

Let’s try a slightly more advanced operation.
MsgBox("Seven equals two is " & (7 = 2) & ".")
' The parentheses are used because otherwise, by order of operations
' (equals is processed last), it would be comparing "Seven equals two is 7" and
"2.".
' Note here that the & operator appends to the string. We will talk about this
later.
'
' The result of this should be a message box popping up saying "Seven equals

two is
' False." This is because (7 = 2) will return False anywhere you put it. In
the
' same sense, (7 = 7) will return True:
MsgBox("Seven equals seven is " & (7 = 7) & ".")

You will get an error if you try to assign a constant or a literal a value, such as 7 = 2. You can
compare 7 and 2, but the answer will always be False.

In the case of two equal operators appearing in a statement, such as
Dim x As Boolean
x = 2 = 7

The second equal operator will be processed first, comparing 2 and 7, giving a False. Then the first
equal operator will be processed, assigning False to x.

Arithmetic operators
Describes the operators that work on numerical values, such as the '+' in addition.

Basic For Qt® provides a basic set of operators to calculate simple arithmetic.
+ Addition
- Subtraction
* Multiplication
/ Division
\ Integer division
Mod Remainder Division
^ Exponentiation
& String concatenation

7 + 2 produces 9
7 - 2 produces 5
7 * 2 produces 14
7 / 2 produces 3.5
7 \ 2 produces 3
7 Mod 2 produces 1
7 ^ 2 produces 49
"7" & "7" produces "77"

Let’s look at a short example of arithmetic operations before we jump into the operators themselves.

In this example we will also be using some basic variables. The Dim operator creates the variable.
Dim Commission As Single
Dim Sales As Single
Sales = 3142.51
Commission = 0.3 * Sales ' Calculate 30% commission.

First, we set the total sales to 3142.51.

The * operator calculates multiplication, so the last line is equivalent to Commission = 0.3 * Sales.
This means that our second step is multiplying 0.3 and Sales. Sales is 3142.51, so our result should
be the product of 0.3 and 3142.51.

Why the funny symbols?

With the exception of addition and subtraction, the symbols used are different to the ones used in
real life. This is simply because the other symbols are not available on a standard keyboard.

Addition

This adds two numbers together, and is denoted by the "+" symbol. If strings are involved it may
also do String concatenation. Examples:
Dim x As Integer
x = 7 + 2 ' Results in 9.
x = 25 + -4 ' Results in 21.
Dim StringA As String
StringA = "A string" + "Another string" ' Results in "A stringAnother string"

Subtraction

This subtracts two numbers, and is denoted by the "-" symbol. Examples:
Dim x As Integer
x = 7 - 2 ' Results in 5.
x = 25 - -4 ' Results in 29.

Multiplication

This multiplies two numbers, and is denoted by the “*” symbol. Examples:
Dim x As Integer
x = 7 * 2 ' Results in 14.
x = 25 * -4 ' Results in -100.

Division

There are more types of division than the one denoted by the "/" symbol. There is also integer
division and remainder division.

• Division
 This is the most commonly used form of division and is denoted by the "/"
operator. Examples:

Dim x As Single ’ (note that we must use the Single class to have decimals) x = 7 / 2 ' Results in
3.5. x = 25 / 4 ' Results in 6.25.

• Integer division
 This divides two numbers, and gives the result without the remainder if
the quotient is a decimal. Examples:

Dim x As Integer x = 7 \ 2 ' Results in 3. x = 25 \ 4 ' Results in 6.

• Remainder Division

This divides two numbers, and gives the result’s remainder if the quotient is a decimal. This is
denoted by the operator “Mod." Examples:

Dim x As Integer x = 7 Mod 2 ' Results in 1. x = 25 Mod 4 ' Results in 1.

Exponentiation

This is raising a number to a power. For example:
Dim x As Integer
x = 7 ^ 2 ' Results in 49.

This results in the number 49 being assigned to the variable x. It can also be used to calculate the

square root of a number. The square root of a number is the number raised to the power of 0.5.
Dim x As Single
x = 7 ^ 0.5 ' Results in a number around 2.645.

Note: It is necessary to ensure that the variables be correctly declared to get the desired results. The
following example works, but will produce the wrong result. This is because the Integer class does
not allow decimal places (just like mathematical integers.)
Dim x As Integer
x = 7 ^ 0.5 ' Results in 3.

Since x is declared as an Integer type, the value square root, a real number, is stored incorrectly.

Any nth root of number is the can be calculated by raising the number to the power of 1 / n:
Dim x As Single
Dim n As Single
n = 7
x = 2 ^ (1 / n)

String operators
Describes the operators used for string and character manipulation, such as the '&' and '+' operators.

String concatenation
The "&" operator joins two strings together.

Example:

Dim String1 As String = “123”

Dim String2 As String = “456”

Dim String3 As String String3 = String1 & String2 ' Results in “123456”.

This will result in String3 being equal to “123456”

The "+" operator may be used in place of "&". However, it is not recommended.

Logical operators
Describes the operators used in boolean logic, such as the ‘And’ and ‘Or’ operators.

Not
The Not operator returns True when the condition is False. Otherwise, it returns False. Example,
If Not (1 = 2) Then
 MsgBox("(1 = 2) is False. So Not False is True")
End If

Truth Table Condition Not Condition
True False
False True

And
The And operator returns True when the conditions of the left and right are True. Otherwise, it
returns False. Both conditions are evaluated before the result is returned. Example,
If (1 = 1) And (2 = 2) Then
 MsgBox("(1 = 1) is True. (2 = 2) is True. So True And True is True")
End If

Truth Table Condition1 Condition2 Condition1 And Condition2
True True True
True False False
False True False
False False False

AndAlso
The AndAlso operator returns False when the condition on the left hand side is False. Else, it
returns True when the conditions of the left and right are True. Otherwise, it returns False. The
condition on the right hand side is never evaluated when that on the left hand side is False. This is
called short-circuited logic.

Truth Table Condition1 Condition2 Condition1 AndAlso Condition2
True True True
True False False
False - False

Or
The Or operator returns True when the condition on either side is True. Otherwise, it returns False.
Both conditions are evaluated before the result is returned.

Truth Table Condition1 Condition2 Condition1 Or Condition2
True True True
True False True
False True True
False False False

OrElse
The OrElse operator returns True when the condition on the left hand side is True. Else, if the
condition on the right hand side is True, it returns True. Otherwise, it returns False. The condition
on the right hand side is never evaluated when that on the left hand side is True. This is called short-
circuited logic.

Truth Table Condition1 Condition2 Condition1 OrElse Condition2
True - True
False True True
False False False

Xor
The Xor operator returns True when the condition on the left hand side or right hand side is True,
but not when both are True. Xor means “Exclusive OR”.

Truth Table Condition1 Condition2 Condition1 Xor Condition2
True True False
True False True
False True True
False False False

GUI Programming
Like its predecessor, Basic For Qt® excels in creating graphical user interfaces by selecting items
from the toolbox and adding to a particular form. While working with forms, you can use the
toolbox to drag different controls to the form you are designing, resize them and relocate them
using the mouse, and set the control’s properties in a corresponding properties window to quickly
develop the user interface. Events handlers for each control’s most common event can be quickly
created by double-clicking on the control to create a new event handler and be sent to that event
handler in the code window.

Some Visible controls

TextBoxes
A TextBox is used to get and display text. A TextBox can only display text in one font, so it can’t be
used for word processing. A TextBox will only display text on a single line.

Labels
Labels are used to display text. Unlike the textbox, it is not meant to accept input from the user.
Often a Label is used to describe another control, and is often used as a prompt for a Textbox.

CommandButtons
CommandButtons are controls that are usually raised that the user most often can click on to
perform some action defined by the programmer. Once the programmer has added the button
control to a form, he can define an event handler to perform an action when the button is clicked.

CheckBoxes
A check box indicates a two-way choice or state (true/false) which can be edited by the user. Check
boxes are shown on the screen as a square box that can contain white space (for false) or a check
mark (for true). Adjacent to the check box is normally shown a caption describing the meaning of
the check box. Inverting the state of a check box is done by clicking the mouse on the button, or the
caption. Basic For Qt® allows the programmer to set the caption.

RadioButtons
A radio button allows the user to choose exactly one of a predefined set of options. Radio buttons
are arranged in groups of two or more and displayed on screen a list of circular holes that can
contain white space (for unselected) or a dot (for selected). Each radio button can show a caption
describing the choice that this radio button represents.

Editor
Can easily save Richtext files with Colours and Fonts.

Some other controls not visible at design time
Some of the controls you can add while designing your form do not actually appear on the form, but
you can still use the toolbox to add them to the form, where they are kept in a tray below the form

for easy reference. For example:

OpenFileDialog
An OpenFileDialog displays the standard “Open” dialog. It lets the user browse for a file.

SaveFileDialog
A SaveFileDialog displays the standard “Save” dialog. It lets the user browse for a directory to save
files and enter a filename. It can (optionally) automatically append extensions to the filename.

FontDialog
A FontDialog lets the user select a font from a list of installed fonts.

ColorDialog
A ColorDialog lets the user select a predefined color or specify a custom color.

Copyright
Partly Copyright © 2007 - 2011 by www.q7basic.org.

Most parts has been used from Wikipedia entry about BASIC and is
licensed under the GNU Free Documentation License.

Products named on this website are trademarks of their respective
owners.

Qt® is a registered trade mark of Nokia Corporation and/or its
subsidiaries.

	An overview about Basic For Qt®
	Object-Oriented
	Event-Driven
	Basic For Qt® Framework

	The Integrated Development Environment (IDE) - To simplify application development.
	IDE Contents
	Toolbox
	Project Window
	Properties Windows
	Code / Design view
	Review

	Getting Started - Making your first application.
	Variables
	Data Types
	Byte
	Short
	Integer
	Single
	Double / Float
	Boolean
	String
	Object / id
	Basic For Qt® also supports VB6 datatypes like Currency (→ Decimal) and Date (→ DateTime)

	Using Variables
	Assigning Values
	Examples
	Constants

	Arrays
	Branch statements
	If...Else...ElseIf Statement
	Select Statement
	Boolean Operators

	Loop statements
	Operators
	Assignment and comparison operators
	Assignment
	Comparison

	Arithmetic operators
	Why the funny symbols?
	Addition
	Subtraction
	Multiplication
	Division
	Exponentiation

	String operators
	String concatenation

	Logical operators
	Not
	And
	AndAlso
	Or
	OrElse
	Xor

	GUI Programming
	Some Visible controls
	TextBoxes
	Labels
	CommandButtons
	CheckBoxes
	RadioButtons
	Editor

	Some other controls not visible at design time
	OpenFileDialog
	SaveFileDialog
	FontDialog
	ColorDialog

	Copyright

